

Toby Luke Anderson

Melbourne, VIC

 tobya2511@gmail.com | +61 448 703 539

 [LinkedIn: linkedin.com/in/toby-anderson-480a2b250](https://linkedin.com/in/toby-anderson-480a2b250)

 [GitHub: github.com/TAnd3s0n111333](https://github.com/TAnd3s0n111333)

PROFILE

Robotics and Mechatronics Engineering (AI) and Physics student with hands-on experience in autonomous systems, robotics software, and simulation-driven system design. Strong interest in long-horizon autonomy, constraint-based planning, and robotics applications in complex or extreme environments.

EDUCATION

Monash University, Clayton, VIC

Bachelor of Engineering (Honours) / Bachelor of Science

Specialisation: Robotics & Mechatronics Engineering (AI) and Physics (Astrophysics)

2025 – Present

TECHNICAL SKILLS

Programming & Software

Python, C++, ROS2, Git, Linux, basic machine learning pipelines

Robotics & Embedded Systems

Arduino, Raspberry Pi, sensors and actuators, control systems, hardware–software integration

Engineering & Analysis

Autonomous navigation, simulation environments, constraint-based system design, data analysis

EXPERIENCE

Autonomous Systems Team Member — *Monash Nova Rover*

2025 – Present

- Developed and tested autonomous navigation systems using sensor fusion (LiDAR, stereo cameras, IMU)
- Implemented path planning and obstacle avoidance algorithms under real-time constraints
- Built computer vision modules for object detection, classification, and localisation
- Integrated C++ and Python modules within the ROS2 framework on physical rover hardware
- Collaborated within a multidisciplinary engineering team to debug and validate system-level behaviour

Independent Research Engineer — *Standard Template Construct (STC)*

2025 – Present

- Designed a modular framework for autonomous system planning under resource and environmental constraints
- Developed simulation and planning tools to evaluate feasibility of complex engineering scenarios
- Investigated trade-offs between automation, robotics, and human involvement in system design
- Applied robotics, AI, and physics-based reasoning to planetary and remote-environment use cases

Research Team Member — *Melbourne Bio Innovation Student Initiative (MBSI)*

2025

- Conducted early-stage technical feasibility research for a proposed chronic kidney disease diagnostic system
- Investigated embedded systems, AI-based analysis, and spectroscopy as candidate technologies
- Contributed to system-level concept design and validation rather than prototype development
- Presented findings to an industry panel from biotechnology and medical technology sectors

PROJECTS

Standard Template Construct (STC)

Independent research project exploring constraint-based planning, modular system architecture, and autonomous decision-making for complex engineering problems, with applications to robotics and extreme environments.

AFFILIATIONS

- Monash Nova Rover
- Monash Engineering Students Society
- Engineers Australia